
There's such a thing as captured dependencies. This means that a
service lives longer than expected.

So why is that bad?

Well, you want services to live according to their lifetime, otherwise,
we take up unnecessary space in memory.

How does it happen?

When you start depending on a Service with a shorter lifetime than
yourself you are effectively capturing it, forcing it to stay around
according to your lifetime. Example:

You register a ProductsService with a scoped lifetime and
an ILogService with a transient lifetime. Then you inject
the ILogService into the ProductsService constructor and
thereby capturing it.

class ProductsService
{
 ProductsService(ILogService logService)
 {

 }
}

Don't do that!

If you are going to depend on something ensure that what you inject
has an equal or longer life time than yourself. So either change what
you depend on or change the lifetime of your dependency.

We complete by declaring the IUnitOfWork type as a "Scoped

Service" inside the Startup.cs - since DbContext can only be passed

onto a transient or scoped service; because DbContext service itself is

a scoped ones.

